Part Number Hot Search : 
GISD1803 TM6457 OB25FL35 S1000 EMK11 FDB5800 SXX18 MC1723G
Product Description
Full Text Search
 

To Download APT100GN60LDQ4G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  050-7622 rev a 10-2005 apt100gn60ldq4(g) typical performance curves maximum ratings all ratings: t c = 25c unless otherwise speci?ed. static electrical characteristics characteristic / test conditionscollector-emitter breakdown voltage (v ge = 0v, i c = 4ma) gate threshold voltage (v ce = v ge , i c = 1ma, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 100a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 100a, t j = 125c) collector cut-off current (v ce = 600v, v ge = 0v, t j = 25c) 2 collector cut-off current (v ce = 600v, v ge = 0v, t j = 125c) 2 gate-emitter leakage current (v ge = 20v) intergrated gate resistor symbol v (br)ces v ge(th) v ce(on) i ces i ges r g(int) units volts ana ? symbol v ces v ge i c1 i c2 i cm ssoa p d t j ,t stg t l apt100gn60ldq4(g) 600 30 229135 300 300a @ 600v 625 -55 to 175 300 unit volts ampswatts c parametercollector-emitter voltage gate-emitter voltage continuous collector current 8 @ t c = 25c continuous collector current 8 @ t c = 110c pulsed collector current 1 switching safe operating area @ t j = 175c total power dissipationoperating and storage junction temperature range max. lead temp. for soldering: 0.063" from case for 10 sec. apt website - http://www.advancedpower.com caution: these devices are sensitive to electrostatic discharge. proper hand ling procedures should be followed. utilizing the latest field stop and trench gate technologies, these igbt's have ultra low v ce(on) and are ideal for low frequency applications that require absolute minimum conduction loss. easy paralleling is a result of very tight parameter distribution and a slightly positive v ce(on) temperature coef?cient. a built-in gate resistor ensures extremely reliable operation, even in the event of a short circuit fault. low gate charge simpli?es gate drive design and minimizes losses. ? 600v field stop ? trench gate: low v ce(on) ? easy paralleling ? 6s short circuit capability ? intergrated gate resistor: low emi, high reliability applications : welding, inductive heating, solar inverters, smps, motor drives, ups min typ max 600 5.0 5.8 6.5 1.05 1.45 1.85 1.87 50 tbd 600 2 600v apt100gn60ldq4 APT100GN60LDQ4G* *g denotes rohs compliant, pb free terminal finish. ? c e g to-264 downloaded from: http:///
050-7622 rev a 10-2005 apt100gn60ldq4(g) 1 repetitive rating: pulse width limited by maximum junction temperature. 2 for combi devices, i ces includes both igbt and fred leakages 3 see mil-std-750 method 3471. 4 e on1 is the clamped inductive turn-on energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to the igbt turn-on loss. tested in inductive switching test circuit shown in ?gure 21, but with a silicon carbide diode.5 e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switching loss. (see figures 21, 22.) 6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) 7 r g is external gate resistance, not including r g(int) nor gate driver impedance. (mic4452) 8 continuous current limited by package pin temperature to 100a. apt reserves the right to change, without notice, the speci?cations and information contained herein . thermal and mechanical characteristics unit c/w gm min typ max .21 .33 6.1 characteristicjunction to case (igbt) junction to case (diode) package weight symbol r jc r jc w t dynamic characteristics symbol c ies c oes c res v gep q g q ge q gc ssoa scsoa t d(on) t r t d(off) t f e on1 e on2 e off t d(on) t r t d(off) t f e on1 e on2 e off test conditions capacitance v ge = 0v, v ce = 25v f = 1 mhz gate charge v ge = 15v v ce = 300v i c = 100a t j = 175c, r g = 4.3 ? 7 , v ge = 15v, l = 100h,v ce = 600v v cc = 600v, v ge = 15v, t j = 125c, r g = 4.3 ? 7 inductive switching (25c) v cc = 400v v ge = 15v i c = 100a r g = 1.0 ? 7 t j = +25c inductive switching (125c) v cc = 400v v ge = 15v i c = 100a r g = 1.0 ? 7 t j = +125c characteristicinput capacitance output capacitance reverse transfer capacitance gate-to-emitter plateau voltage total gate charge 3 gate-emitter charge gate-collector ("miller ") charge switching safe operating area short circuit safe operating area turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 turn-on switching energy (diode) 5 turn-off switching energy 6 turn-on delay timecurrent rise time turn-off delay time current fall time turn-on switching energy 4 4 turn-on switching energy (diode) 5 5 turn-off switching energy 6 6 min typ max 6000 560 200 9.5 600 45 340 300 6 31 65 310 55 4750 5095 2675 31 65 350 85 5000 6255 3300 unit pf v nc a s ns j ns j downloaded from: http:///
050-7622 rev a 10-2005 apt100gn60ldq4(g) typical performance curves v gs(th) , threshold voltage v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) (normalized) i c, dc collector current(a) v ce , collector-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) i c , collector current (a) 250s pulse test<0.5 % duty cycle 300250 200 150 100 50 0 300250 200 150 100 50 0 3.02.5 2.0 1.5 1.0 0.5 0 1.151.10 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 5 10 15 20 25 30 0 2 4 6 8 10 12 14 0 100 200 300 400 500 600 700 8 10 12 14 16 0 25 50 75 100 125 150 175 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 175 350300 250 200 150 100 50 0 1614 12 10 86 4 2 0 3.02.5 2.0 1.5 1.0 0.5 0 300250 200 150 100 50 0 v ce , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics(t j = 25c) figure 2, output characteristics (t j = 125c) v ge , gate-to-emitter voltage (v) gate charge (nc) figure 3, transfer characteristics figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 5, on state voltage vs gate-to- emitter voltage figure 6, on state voltage vs junction tem perature t j , junction temperature (c) t c , case temperature (c) figure 7, threshold voltage vs. junction temperature figure 8, dc collector current vs case temper ature 15v 9v 8v 7v 10v t j = 25c. 250s pulse test <0.5 % duty cycle v ge = 15v. 250s pulse test <0.5 % duty cycle i c = 200a i c = 100a i c = 50a t j = 125c t j = 25c t j = -55c v ge = 15v 11v 12v t j = 175c v ce = 480v v ce = 300v v ce = 120v i c = 100a t j = 25c lead temperature limited lead temperature limited 13v 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 5 10 15 20 25 30 0 2 4 6 8 10 12 14 0 100 200 300 400 500 600 700 8 10 12 14 16 0 25 50 75 100 125 150 175 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 175 v ce , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics(t j = 25c) figure 2, output characteristics (t j = 125c) v ge , gate-to-emitter voltage (v) gate charge (nc) figure 3, transfer characteristics figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 5, on state voltage vs gate-to- emitter voltage figure 6, on state voltage vs junction temperature t j , junction temperature (c) t c , case temperature (c) figure 7, threshold voltage vs. junction temperature figure 8, dc collector current vs case temperature i c = 200a i c = 100a i c = 50a t j = 125c t j = 25c t j = -55c t j = 175c downloaded from: http:///
050-7622 rev a 10-2005 apt100gn60ldq4(g) v ge =15v,t j =125c v ge =15v,t j =25c v ce = 400v r g = 1.0 ? l = 100h switching energy losses (mj) e on2 , turn on energy loss (mj) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses (mj) e off , turn off energy loss (mj) t f, fall time (ns) t d (off) , turn-off delay time (ns) i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-off delay time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn off energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junc tion temperature v ce = 400v v ge = +15v r g = 1.0 ? r g = 1.0 ? , l = 100 h, v ce = 400v v ce = 400v t j = 25c , or 125c r g = 1.0 ? l = 100h 4035 30 25 20 15 10 50 250200 150 100 50 0 2520 15 10 50 4540 35 30 25 20 15 10 50 500400 300 200 100 0 140120 100 8060 40 20 08 7 6 5 4 3 2 1 0 2520 15 10 50 v ge = 15v t j = 125c, v ge = 15v t j = 25 or 125c,v ge = 15v t j = 25c, v ge = 15v t j = 125c t j = 25c v ce = 400v v ge = +15v r g = 1.0 ? t j = 125c t j = 25c v ce = 400v v ge = +15v r g = 1.0 ? v ce = 400v v ge = +15v t j = 125c 0 25 50 75 100 125 150 175 200 225 0 25 50 75 100 125 150 175 200 225 0 25 50 75 100 125 150 175 200 225 0 25 50 75 100 125 150 175 200 225 0 25 50 75 100 125 150 175 200 225 0 25 50 75 100 125 150 175 200 225 0 5 10 15 20 0 25 50 75 100 125 r g = 1.0 ? , l = 100 h, v ce = 400v e on2, 200a e off, 200a e on2, 100a e off, 100a e on2, 50a e off, 50a e on2, 200a e off, 200a e on2, 100a e off, 100a e on2, 50a e off, 50a downloaded from: http:///
050-7622 rev a 10-2005 apt100gn60ldq4(g) typical performance curves 0.250.20 0.15 0.10 0.05 0 z jc , thermal impedance (c/w) 0.3 d = 0.9 0.7 single pulse rectangular pulse duration (seconds) figure 19a, maximum effective transient thermal impedance, junction-to-case vs pulse duration 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 10,000 5,0001,000 500100 350300 250 200 150 100 50 0 c, capacitance ( p f) i c , collector current (a) v ce , collector-to-emitter voltage (volts) v ce , collector to emitter voltage figure 17, capacitance vs collector-to-emitter voltage figure 18,minimim switching safe operatin g area 0 10 20 30 40 50 0 100 200 300 400 500 600 700 figure 19b, transient thermal impedance model 10 30 50 70 90 110 130 150 f max , operating frequency (khz) i c , collector current (a) figure 20, operating frequency vs collector current t j = 125 c t c = 75 c d = 50 %v ce = 400v r g = 1.0 ? 100 5010 4 0.5 0.1 0.05 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: c oes c res c ies 0.9490.116 0.007080.244 power (watts) rc model junctiontemp. ( c) case temperature. ( c) downloaded from: http:///
050-7622 rev a 10-2005 apt100gn60ldq4(g) figure 22, turn-on switching waveforms and de?nitions figure 23, turn-off switching waveforms and de?nitions t j = 125c collector current collector voltage gate voltage switching energy 5% 10% t d(on) 90% 10% t r 5% t j = 125c collector voltage collector current gate voltage switching energy 0 90% t d(off) 10% t f 90% apt100dq60 i c a d.u.t. v ce figure 21, inductive switching test circuit v cc downloaded from: http:///
050-7622 rev a 10-2005 apt100gn60ldq4(g) typical performance curves z jc , thermal impedance (c/w) 0.350.30 0.25 0.20 0.15 0.10 0.05 0 0.5 single pulse 0.1 0.3 0.7 0.05 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: d = 0.9 characteristic / test conditionsmaximum average forward current (t c = 108c, duty cycle = 0.5) rms forward current (square wave, 50% duty)non-repetitive forward surge current (t j = 45c, 8.3ms) symbol i f (av) i f (rms) i fsm symbol v f characteristic / test conditions i f = 100a forward voltage i f = 200a i f = 100a, t j = 125c static electrical characteristics unit amps unit volts min typ max 1.6 2.2 2.05 1.28 apt100gn60ldq4 100156 1000 dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise speci?ed. ultrafast soft recovery anti-parallel diode min typ max - 34 - 160 - 290 - 5 - - 220 - 1530 - 13 - - 100 - 2890 - 44 unit ns nc amps ns nc amps ns nc amps characteristicreverse recovery time reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current symbol t rr t rr q rr i rrm t rr q rr i rrm t rr q rr i rrm test conditions i f = 100a, di f /dt = -200a/ s v r = 400v, t c = 25 c i f = 100a, di f /dt = -200a/ s v r = 400v, t c = 125 c i f = 100a, di f /dt = -1000a/ s v r = 400v, t c = 125 c i f = 1a, di f /dt = -100a/ s, v r = 30v, t j = 25 c 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 10 rectangular pulse duration (seconds) figure 24a. maximum effective transient thermal impedance, junction-to-case vs. pulse duration single pulse 0.05 figure 24b, transient thermal impedance model 0.0673 0.188 0.0743 0.01820.361 5.17 power (watts) junctiontemp ( c) rc model case temperature ( c) downloaded from: http:///
050-7622 rev a 10-2005 apt100gn60ldq4(g) t j =125 c v r =400v 50a 100a 200a duty cycle = 0.5 t j =175 c 0 25 50 75 100 125 150 25 50 75 100 125 150 175 1 10 100 200 180160 140 120 100 8060 40 20 0 q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) 0 0.5 1.0 1.5 2.0 2.5 3.0 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 t j = -55 c t j = 25 c t j = 125 c t j = 175 c t j =125 c v r =400v 100a 50a 200a 300250 200 150 100 50 0 40003500 3000 2500 2000 1500 1000 500 0 t j =125 c v r =400v 200a 100a 50a 300250 200 150 100 50 0 6050 40 30 20 10 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) q rr t rr q rr i rrm 1.21.0 0.8 0.6 0.4 0.2 0.0 14001200 1000 800600 400 200 0 t rr v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 25. forward current vs. forward voltage figure 26. reverse recovery time vs. current rate of change -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 27. reverse recovery charge vs. current rate of change figure 28. reverse recovery cu rrent vs. current rate of change t j , junction temperature ( c) case temperature ( c) figure 29. dynamic parameters vs. junction temperature figure 30. maximum average fo rward current vs. casetemperature v r , reverse voltage (v) figure 31. junction capacitance vs. reverse voltage downloaded from: http:///
050-7622 rev a 10-2005 apt100gn60ldq4(g) typical performance curves 4 3 1 2 5 5 zero 1 2 3 4 di f /dt - rate of diode current change through zero crossing. i f - forward conduction current i rrm - maximum reverse recovery current. t rr - reverse r ecovery time, measured from zero crossing where diode q rr - area under the curve defined by i rrm and t rr . current goes from positive to negative, to the point at which the straight line through i rrm and 0.25 i rrm passes through zero. figure 32. diode test circuit figure 33, diode reverse recovery waveform and definitions 0.25 i rrm pearson 2878 current transformer di f /dt adjust 30 h d.u.t. +18v 0v v r t rr / q rr waveform e1 sac: tin, silver, copper to-264(l) package outline dimensions in millimeters and (inches) 19.51 (.768)20.50 (.807) 19.81 (.780)21.39 (.842) 25.48 (1.003)26.49 (1.043) 2.29 (.090)2.69 (.106) 0.76 (.030)1.30 (.051) 3.10 (.122)3.48 (.137) 4.60 (.181)5.21 (.205) 1.80 (.071) 2.01 (.079) 2.59 (.102) 3.00 (.118) 0.48 (.019)0.84 (.033) 2.29 (.090)2.69 (.106) 5.79 (.228)6.20 (.244) 2.79 (.110)3.18 (.125) 5.45 (.215) bsc 2-plcs. collector (cathode) emitter (a node) ga te collector (cathode) apt60m75l2ll downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT100GN60LDQ4G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X